K+-Cl- cotransporter-2 KCC2 in chicken cardiomyocytes.

نویسندگان

  • Shane P Antrobus
  • Christian Lytle
  • John A Payne
چکیده

Using antibodies prepared against a unique region (exon 22-24) of rat K(+)-Cl(-) cotransporter-2 (KCC2), we confirmed that the ~140-kDa KCC2 protein is exclusively expressed in rat brain, but in chicken, we observed strong reactivity not only with the ~140-kDa KCC2 protein in brain but also a slightly larger ~145-kDa protein in heart. In silico analysis showed that while exon 22 of KCC2 is unique to this isoform in therian mammals, it is retained in KCC2's closest paralog, KCC4, of lower vertebrates, including chicken. To eliminate potential cross-reactivity with chicken KCC4, the antibodies were preadsorbed with blocking peptides prepared over the only two regions showing significant sequence identity to chicken KCC4. This completely eliminated antibody recognition of exogenously expressed chicken KCC4 but not of the ~145-kDa protein in chicken heart, indicating that chicken heart expresses KCC2. Real-time PCR confirmed robust KCC2 transcript expression in both chicken brain and heart. Chicken heart expressed predominantly the longer KCC2a splice variant consistent with the larger ~145-kDa protein in chicken heart. Immunofluorescence microscopy revealed prominent plasma membrane KCC2 labeling in chicken ventricular cardiomyocytes. We hypothesize that KCC2 is an important Cl(-) extrusion pathway in avian cardiomyocytes that counters channel-mediated Cl(-) loading during high heart rates with β-adrenergic stimulation. While KCC2 is absent from mammalian cardiomyocytes, understanding the role that the other KCC isoforms play in Cl(-) homeostasis of these cells represents a nascent area of research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain.

The K-Cl cotransporter KCC2 plays a crucial role in neuronal chloride regulation. In mature central neurons, KCC2 is responsible for the low intracellular Cl(-) concentration ([Cl(-)](i)) that forms the basis for hyperpolarizing GABA(A) receptor-mediated responses. Fast changes in KCC2 function and expression have been observed under various physiological and pathophysiological conditions. Here...

متن کامل

Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]oregulation.

The neuronal K-Cl cotransporter isoform (KCC2) was functionally expressed in human embryonic kidney (HEK-293) cell lines. Two stably transfected HEK-293 cell lines were prepared: one expressing an epitope-tagged KCC2 (KCC2-22T) and another expressing the unaltered KCC2 (KCC2-9). The KCC2-22T cells produced a glycoprotein of ∼150 kDa that was absent from HEK-293 control cells. The 86Rb influx in...

متن کامل

Current view on the functional regulation of the neuronal K+-Cl− cotransporter KCC2

In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl(-))-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl(-) concentration ([Cl(-)]i). Lowering [Cl(-)]i enhances inhibition, whereas raising [Cl(-)]i facilitates neuronal activity. A neuron's basal level of [Cl(-)]i, as well as its Cl(-) extrusion capacity, is critically dep...

متن کامل

Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2.

KCC2, a neuronal-specific K-Cl cotransporter, plays a major role in maintaining intracellular Cl(-) concentration in neurons below its electrochemical equilibrium potential, thus favoring robust GABA hyperpolarizing or inhibitory responses. The pharmacology of the K-Cl cotransporter is dominated by loop diuretics such as furosemide and bumetanide, molecules used in clinical medicine because the...

متن کامل

Diversity of neuron-specific K+-Cl- cotransporter expression and inhibitory postsynaptic potential depression in rat motoneurons.

Motoneurons receive a robust recurrent synaptic inhibition by gamma-aminobutyric acid and glycine, which activate Cl(-) channels. Thus, Cl(-) homeostasis determines the efficacy of synaptic inhibition in the motoneurons. In situ hybridization reveals that the neuronal K(+)-Cl(-) cotransporter isoform 2 (KCC2), a major mechanism in maintaining a low Cl(-) concentration in neurons, is abundantly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 303 11  شماره 

صفحات  -

تاریخ انتشار 2012